#ifndef H_UnorderedLinkedList #define H_UnorderedLinkedList //*********************************************************** // Author: D.S. Malik // // This class specifies the members to implement the basic // properties of an unordered linked list. This class is // derived from the class linkedListType. //*********************************************************** #include "linkedList.h" using namespace std; template class unorderedLinkedList: public linkedListType { public: bool search(const Type& searchItem) const; //Function to determine whether searchItem is in the list. //Postcondition: Returns true if searchItem is in the list, // otherwise the value false is returned. void insertFirst(const Type& newItem); //Function to insert newItem at the beginning of the list. //Postcondition: first points to the new list, newItem is // inserted at the beginning of the list, last points to // the last node, and count is incremented by 1. // void insertLast(const Type& newItem); //Function to insert newItem at the end of the list. //Postcondition: first points to the new list, newItem is // inserted at the end of the list, last points to the // last node, and count is incremented by 1. void deleteNode(const Type& deleteItem); //Function to delete deleteItem from the list. //Postcondition: If found, the node containing deleteItem // is deleted from the list. first points to the first // node, last points to the last node of the updated // list, and count is decremented by 1. }; template bool unorderedLinkedList:: search(const Type& searchItem) const { nodeType *current; //pointer to traverse the list bool found = false; current = first; //set current to point to the first //node in the list while (current != NULL && !found) //search the list if (current->info == searchItem) //searchItem is found found = true; else current = current->link; //make current point to //the next node return found; }//end search template void unorderedLinkedList::insertFirst(const Type& newItem) { nodeType *newNode; //pointer to create the new node newNode = new nodeType; //create the new node newNode->info = newItem; //store the new item in the node newNode->link = first; //insert newNode before first first = newNode; //make first point to the //actual first node count++; //increment count if (last == NULL) //if the list was empty, newNode is also //the last node in the list last = newNode; }//end insertFirst template void unorderedLinkedList::insertLast(const Type& newItem) { nodeType *newNode; //pointer to create the new node newNode = new nodeType; //create the new node newNode->info = newItem; //store the new item in the node newNode->link = NULL; //set the link field of newNode //to NULL if (first == NULL) //if the list is empty, newNode is //both the first and last node { first = newNode; last = newNode; count++; //increment count } else //the list is not empty, insert newNode after last { last->link = newNode; //insert newNode after last last = newNode; //make last point to the actual //last node in the list count++; //increment count } }//end insertLast template void unorderedLinkedList::deleteNode(const Type& deleteItem) { nodeType *current; //pointer to traverse the list nodeType *trailCurrent; //pointer just before current bool found; if (first == NULL) //Case 1; the list is empty. cout << "Cannot delete from an empty list." << endl; else { if (first->info == deleteItem) //Case 2 { current = first; first = first->link; count--; if (first == NULL) //the list has only one node last = NULL; delete current; } else //search the list for the node with the given info { found = false; trailCurrent = first; //set trailCurrent to point //to the first node current = first->link; //set current to point to //the second node while (current != NULL && !found) { if (current->info != deleteItem) { trailCurrent = current; current = current-> link; } else found = true; }//end while if (found) //Case 3; if found, delete the node { trailCurrent->link = current->link; count--; if (last == current) //node to be deleted //was the last node last = trailCurrent; //update the value //of last delete current; //delete the node from the list } else cout << "The item to be deleted is not in " << "the list." << endl; }//end else }//end else }//end deleteNode #endif